Containerization

Containerization

Containerization

From Wikipedia, the free encyclopedia
This covers containerization in general. For 20- and 40-ft-long metal boxes, see intermodal container.
This article’s introduction section may not adequately summarize its contents . To comply with Wikipedia’s lead section guidelines, please consider expanding the lead to provide an accessible overview of the article’s key points. (May 2010)

Shipping containers at the Port Newark-Elizabeth Marine Terminal in New Jersey, USA

A container-freight train on the West Coast Main Line near Nuneaton, England

A container ship being loaded by aportainer crane in Copenhagen Harbour

Containerization (or containerisation ) is a system of intermodal freight transport using standardintermodal containers as prescribed by the International Organization for Standardization (ISO). These can be loaded and sealed intact onto container ships, railroad cars, cargo planes, andsemi-trailer trucks.

The introduction of containers resulted in vast improvements in port handling efficiency, thus lowering costs and helping lower freight charges and, in turn, boosting trade flows. [ citation needed ] Most goods can be shipped by container.

Contents

[hide]

  • 1 History
    • 1.1 Origins
    • 1.2 Purpose-built ships
    • 1.3 Towards standards
    • 1.4 Today
  • 2 Car shipping
  • 3 Container standards
    • 3.1 ISO standard
    • 3.2 Air freight containers
    • 3.3 Other container system standards
  • 4 Load securing in containers
  • 5 Issues
    • 5.1 Increased efficiency
    • 5.2 Additional fuel costs
    • 5.3 Hazards
    • 5.4 Empty containers
    • 5.5 Loss at sea
    • 5.6 Trades union challenges
  • 6 Double-stack containerization
    • 6.1 History of double-stacking
  • 7 Wagons
  • 8 Other uses for containers
  • 9 Companies
    • 9.1 Biggest ISO container companies
  • 10 BBC tracking project
  • 11 See also
  • 12 References
  • 13 Further reading
  • 14 External links

[edit]History

[edit]Origins

Containerisation has its origins in early coal mining regions in England and Germany from the late 1700s on. [ citation needed ] [1] The global standardization of containers and container handling equipment was an important innovation in 20th century logistics.

By the 1830s, railroads on several continents were carrying containers that could be transferred to other modes of transport. Originally used for shipping coal on and off barges, ‘loose boxes’ were used to containerize coal from the late 1780s, on places like the Bridgewater Canal. By the 1840s, iron boxes were in use as well as wooden ones. The early 1900s saw the adoption of closed container boxes designed for movement between road and rail.

In the United Kingdom, several railway companies were using similar containers by the beginning of the 20th century and in the 1920s theRailway Clearing House standardised the RCH container. Five- or ten-foot-long, wooden and non-stackable, these early standard containers were a great success but the standard remained UK-specific. [ citation needed ]

From 1926 to 1947, in the US, the Chicago North Shore and Milwaukee Railway carried motor carrier vehicles and shippers’ vehicles loaded on flatcars between Milwaukee, Wisconsin and Chicago, Illinois. Beginning in 1929, Seatrain Lines carried railroad boxcars on its sea vessels to transport goods between New York and Cuba. [ citation needed ] In the mid-1930s, the Chicago Great Western Railway and then the New Haven Railroad began “piggy-back” service (transporting highway freight trailers on flatcars) limited to their own railroads. By 1953, the CB&Q, the Chicago and Eastern Illinois and the Southern Pacific railroads had joined the innovation. Most cars were surplus flatcars equipped with new decks. By 1955, an additional 25 railroads had begun some form of piggy-back trailer service.

In 1955, businessman (and former trucking company owner) Malcolm McLean worked with engineer Keith Tantlinger to develop the modernintermodal container. The challenge was to design a shipping container and devise a method of loading and locking them onto ships. The result was a 8 feet (2.4 m) tall by 8 ft (2.4 m) wide box in 10 ft (3.0 m) long units constructed from 25 mm (0.98 in) thick corrugated steel. The design incorporated a twist-lock mechanism atop each of the four corners, allowing the container to be easily secured and lifted using cranes. Helping McLean make the successful design, Tantlinger convinced McLean to give the patented designs to the industry; this began international standardization of shipping containers. [2]

Toward the end of World War II, the United States Army used specialized containers to speed the loading and unloading of transport ships. The army used the term “transporters” to identify the containers, for shipping household goods of officers in the field. A “transporter” was a reusable container, 8.5 feet (2.6 m) long, 6.25 feet (1.91 m) wide, and 6.83 feet (2.08 m) high, made of rigid steel with a carrying capacity of 9,000 pounds. During the Korean War the transporter was evaluated for handling sensitive military equipment, and proving effective, was approved for broader use. Theft of material and damage to wooden crates, in addition to handling time, by stevedores at the Port of Busan, [ citation needed ] convinced the army that steel containers were needed. In 1952 the army began using the term CONEX, short for “Container Express”. The first major shipment of CONEXes (containing engineering supplies and spare parts) were shipped by rail from the Columbus General Depot in Georgia to the Port of San Francisco, then by ship to Yokohama, Japan, and then to Korea, in late 1952. Shipment times were cut almost in half. By the Vietnam War the majority of supplies and materials were shipped with the CONEX. After theU.S. Department of Defense standardized an 8’×8′ cross section container in multiples of 10′ lengths for military use, it was rapidly adopted for shipping purposes. [3] [4]

These standards were adopted in the United Kingdom for containers and largely displaced wooden containers in the 1950s. [ citation needed ] The railways of the USSR had their own small containers. [5]

[edit]Purpose-built ships

Containers waiting at the South Korean port of Busan.

Main article: Container ship

The first vessels purpose-built to carry containers began operation in Denmark in 1951. In the U.S. ships began carrying containers between Seattle and Alaska in 1951. The world’s first intermodal container system used the purpose-built container ship the Clifford J. Rodgers , built in Montreal in 1955 and owned by the White Pass and Yukon Route. Its first trip carried 600 containers between North Vancouver, British Columbia and Skagway, Alaska, on November 26, 1955; in Skagway, the containers were unloaded to purpose-built railroad cars for transport north to the Yukon, in the firstintermodal service using trucks, ships and railroad cars. Southbound containers were loaded by shippers in the Yukon, moved by rail, ship and truck, to their consignees, without opening. This first intermodal system operated from November 1955 for many years.

The U.S. container shipping industry dates to April 26, 1956, when trucking entrepreneur Malcom McLean put 58 containers aboard a refitted tanker ship, the Ideal-X , and sailed them from Newark to Houston. [6] What was new in the USA about McLean’s innovation was the idea of using large containers that were never opened in transit between shipper and consignee and that were transferable on an intermodal basis, among trucks, ships and railroad cars. McLean had initially favored the construction of “trailerships”—taking trailers from large trucks and stowing them in a ship’s cargo hold. This method of stowage, referred to as roll-on/roll-off, was not adopted because of the large waste in potential cargo space onboard the vessel, known as broken stowage. Instead, he modified his original concept into loading just the containers, not the chassis, onto the ships, hence the designation container ship or “box” ship. [7] [8] (See also pantechnicon van and trolley and lift van.)

[edit]Towards standards

During its first 20 years, many container sizes and corner fittings were used; there were dozens of incompatible container systems in the U.S. alone. Among the biggest operators, the Matson Navigation Company had a fleet of 24-foot (7.3 m) containers while Sea-Land Service, Inc used 35-foot (11 m) containers. The standard sizes and fitting and reinforcement norms that exist now evolved out of a series of compromises among international shipping companies, European railroads, U.S. railroads, and U.S. trucking companies. Four important ISO (International Organization for Standardization) recommendations standardized containerization globally [9]

In the United States, containerization and other advances in shipping were impeded by the Interstate Commerce Commission, which was created in 1887 to keep railroads from using monopolist pricing and rate discrimination but fell victim to regulatory capture. By the 1960s, ICC approval was required before any shipper could carry different items in the same vehicle, or change rates. The United States’ present fully integrated systems became possible only after the ICC’s regulatory oversight was cut back (and abolished in 1995), trucking and rail were deregulated in the 1970s and maritime rates were deregulated in 1984. [10]

[edit]Today

A converted container used as an office at a building site

Today, approximately 90% of non-bulk cargo worldwide moves by containers stacked on transport ships; [11] 26% of all containers originate from China. [12] As of 2005, some 18 million total containers make over 200 million trips per year. There are ships that can carry over 14,500 Twenty-foot equivalent units (TEU), for example the Emma Mærsk , 396 m long, launched August 2006. It has even been predicted that, at some point, container ships will be constrained in size only by the depth of the Straits of Malacca—one of the world’s busiest shipping lanes—linking the Indian Ocean to the Pacific Ocean. This so-called Malaccamax size constrains a ship to dimensions of 470 m in length and 60 m wide (1542 feet by 197 feet). [8]

However, few initially foresaw the extent of the influence containerization would bring to the shipping industry. In the 1950s, Harvard University economist Benjamin Chinitz predicted that containerization would benefit New York by allowing it to ship industrial goods produced there more cheaply to the Southern United States than other areas, but did not anticipate that containerization might make it cheaper to import such goods from abroad. Most economic studies of containerization merely assumed that shipping companies would begin to replace older forms of transportation with containerization, but did not predict that the process of containerization itself would have some influence on producers and the extent of trading. [8]

The widespread use of ISO standard containers has driven modifications in other freight-moving standards, gradually forcing removable truck bodies or swap bodies into the standard sizes and shapes (though without the strength needed to be stacked), and changing completely the worldwide use of freight pallets that fit into ISO containers or into commercial vehicles.

Improved cargo security is also an important benefit of containerization. The cargo is not visible to the casual viewer and thus is less likely to be stolen and the doors of the containers are generally sealed so that tampering is more evident. This has reduced the “falling off the truck” syndrome that long plagued the shipping industry.

Use of the same basic sizes of containers across the globe has lessened the problems caused by incompatible rail gauge sizes in different countries. The majority of the rail networks in the world operate on a 1,435 mm (4 ft 8 1 ? 2 in) gauge track known as standard gauge but many countries (such as Russia, India, Finland, and Lithuania) use broader gauges while many other countries in Africa and South America usenarrower gauges on their networks. The use of container trains in all these countries makes trans-shipment between different gauge trains easier.

[edit]Car shipping

Main article: Car shipping

Containers have become a popular way to ship vehicles overseas. Cars can be loaded into 20 or 40 foot containers, loaded onto container ships, and shipped to most countries. Unlike roll-on/roll-off vehicle shipping, personal effects can be loaded into the container with the vehicle, allowing for easy international relocation.

[edit]Container standards

[edit]ISO standard

Main article: Intermodal container

There are five common standard lengths, 20-ft (6.1 m), 40-ft (12.2 m), 45-ft (13.7 m), 48-ft (14.6 m), and 53-ft (16.2 m). United States domestic standard containers are generally 48 ft (15 m) and 53-ft (rail and truck). Container capacity is often expressed in twenty-foot equivalent units ( TEU , or sometimes teu ). An equivalent unit is a measure of containerized cargo capacity equal to one standard 20 ft (length) × 8 ft (width) container. As this is an approximate measure, the height of the box is not considered, for instance the 9 ft 6 in (2.9 m) High cube and the 4-ft 3-in (1.3 m) half height 20 ft (6.1 m) containers are also called one TEU.

The maximum gross mass for a 20 ft (6.1 m) dry cargo container is 24,000 kg, and for a 40-ft (including the 2.87 m (9 ft 6 in) high cube container), it is 30,480 kg. Allowing for the tare mass of the container, the maximum payload mass is therefore reduced to approximately 22,000 kg for 20 ft (6.1 m), and 27,000 kg for 40 ft (12 m) containers. [13]

The original choice of 8 foot height for ISO containers was made in part to suit a large proportion of railway tunnels, though some had to be deepened. With the arrival of even taller containers, further enlargement is proving necessary. [14]

[edit]Air freight containers

A number of LD-designation Unit Load Device containers

Main article: Unit Load Device

While major airlines use containers that are custom designed for their aircraft and associated ground handling equipment the IATA has created a set of standard container sizes, the LD-designation sizes are shown below:

Designation ? Width (in) ? Height (in) ? Depth (in) ? Base (in) ? Max load (lb) ? Max load (kg) ? Shape ?
LD-1 92.0 64.0 60.4 61.5 3500 ~1588 Type A
LD-2 61.5 64.0 47.0 61.5 2700 ~1225 Type A
LD-3 79.0 64.0 60.4 61.5 3500 ~1588 Type A
LD-4 96.0 64.0 60.4 n/a 5400 ~2449 Rectangular
LD-5 125.0 64.0 60.4 n/a 7000 ~3175 Rectangular
LD-6 160.0 64.0 60.4 125.0 7000 ~3175 Type B
LD-7 125.0 64.0 80.0 n/a 13300 ~6033 Rect. or Contoured
LD-8 125.0 64.0 60.4 96.0 5400 ~2449 Type B
LD-9 125.0 64.0 80.0 n/a 13300 ~6033 Rect. or Contoured
LD-10 125.0 64.0 60.4 n/a 7000 ~3175 Contoured
LD-11 125.0 64.0 60.4 n/a 7000 ~3175 Rectangular
LD-29 186.0 64.0 88.0 125.0 13300 ~6033 Type B

LD-1, -2, -3, -4, and -8 are those most widely used, together with the rectangular M3 containers.

[edit]Other container system standards

Some other container systems are:

[edit]Load securing in containers

See also: Load securing

There are many different ways and materials available to stabilize and secure cargo in containers used in all modes of transportation. Conventional load securing methods and materials such as steel banding and wood blocking and bracing have been around for decades and are still widely used. Load securing methods offer several, new and unknown options that have become available through technological advancement including polyester strapping and -lashing, synthetic webbings and Dunnage Bags, also known as air bags or inflatable bags.

Application in container

Polyester Strapping and Dunnage Bag application

Polyester Lashing Application

Twistlocks which capture and constrain containers.Forklifts designed to handle containers have similar devices.

[edit]Issues

[edit]Increased efficiency

Although there have been few direct correlations made between containers and job losses, there are a number of texts associating job losses at least in part with containerization. A 1998 study of post-containerization employment at United States ports found that container cargo could be moved nearly twenty times faster than pre-container break bulk. [15] The new system of shipping also allowed for freight consolidating jobs to move from the waterfront to points far inland, which also decreased the number of waterfront jobs.

[edit]Additional fuel costs

Containerization increases the fuel costs of transport and reduces the capacity of the transport as the container itself must be shipped around not just the goods. For certain bulk products this makes containerization unattractive. For most goods the increased fuel costs and decreased transport efficiencies are currently more than offset by the handling savings. On railway the capacity of the container is far from its maximum weight capacity, and the weight of a railcar must be transported with not so much goods. In some areas (mostly USA and Canada) containers are double stacked, but this is usually not possible in other countries.

[edit]Hazards

Containers have been used to smuggle contraband. The vast majority of containers are never subjected to scrutiny due to the large number of containers in use. In recent years there have been increased concerns that containers might be used to transport terrorists or terrorist materials into a country undetected. The U.S. government has advanced the Container Security Initiative (CSI), intended to ensure that high-risk cargo is examined or scanned, preferably at the port of departure.

[edit]Empty containers

Containers are intended to be used constantly, being loaded with new cargo for a new destination soon after having emptied of previous cargo. This is not always possible, and in some cases, the cost of transporting an empty container to a place where it can be used is considered to be higher than the worth of the used container. Shipping lines and Container Leasing Companies have become expert at repositioning empty containers from areas of low or no demand, such as US West Coast, to areas of high demand such as China. However, damaged or retired containers may also be recycled in the form of shipping container architecture, or the steel content salvaged. In the summer of 2010, a world wide shortage of containers developed as shipping increased post-recession, while new container production had largely ceased. [16]

[edit]Loss at sea

Containers occasionally fall from the ships, usually during storms; 10,000 containers are lost at sea each year. [17] For instance, on November 30, 2006, a container washed ashore on the Outer Banks of North Carolina USA, along with thousands of bags of its cargo of Doritos Chips. Containers lost at sea do not necessarily sink, but seldom float very high out of the water, making them a shipping hazard that is difficult to detect. Freight from lost containers has provided oceanographers with unexpected opportunities to track global ocean currents, notably a cargo of Friendly Floatees. [18]

In 2007 the International Chamber of Shipping and the World Shipping Council began work on a code of practice for container storage, including crew training on parametric rolling, safer stacking and marking of containers and security for above-deck cargo in heavy swell. [19]

[edit]Trades union challenges

Some of the biggest battles in the container revolution were waged in Washington, D.C. Intermodal shipping got a huge boost in the early 1970s when carriers won permission to quote combined rail-ocean rates. Later, non-vessel- operating common carriers won a long court battle with a Supreme Court decision against contracts that attempted to require that union labor be used for stuffing and stripping containers at off-pier locations. [20]

[edit]Double-stack containerization

Part of a United States double-stack container train loaded with 53 ft (16.15 m) containers

A spine car with a 20 ft tanktainer and an open-top 20 ft container with canvas cover

Main article: Double-stack rail transport

Most flatcars cannot carry more than one standard 40-foot (12.19 m) container, but if the rail line has been built with sufficient vertical clearance, a double-stack car can accept a container and still leave enough clearance for another container on top. This usually precludes operation of double-stacked wagons on lines with overhead electric wiring.

[edit]History of double-stacking

[edit]Wagons

Railways have flat wagons and well cars that can hold 40′ ISO containers.

Narrow gauge railways of 610 mm (2 ft)  gauge have smaller wagons that do not readily carry ISO containers, nor do the 30-foot (9.14 m) long and 7-foot (2.13 m) wide wagons of the 762 mm (2 ft 6 in) gauge Kalka-Shimla Railway. Wider narrow gauge railways of e.g. 914 mm (3 ft) and 1,000 mm (3 ft 3 3 ? 8 in) gauge can take ISO containers, provided that the loading gauge allows it.

[edit]Other uses for containers

Shipping container architecture is the use of containers as the basis for housing and other functional buildings for people, either as temporary housing or permanent, and either as a main building or as a cabin or workshop. Containers can also be used as sheds or storage areas in industry and commerce.

Containers are also beginning to be used to house computer data centers, although these are normally specialized containers.

[edit]Companies

[edit]Biggest ISO container companies

Top 20 container shipping companies in order of TEU capacity, 23 Jan 2011
Company TEU capacity [24] Number of ships
A.P. Moller-Maersk Group 2,150,888 545
Mediterranean Shipping Company S.A. 1,638,962 414
CMA CGM 1,100,007 384
American President Lines 589,879 147
Evergreen Marine Corporation 554,725 152
Hapag-Lloyd 541,811 124
COSCO 498,437 134
CSAV 469,428 128
Hanjin Shipping 448,051 98
China Shipping Container Lines 440,236 122
NYK Line 365,034 95
Mitsui O.S.K. Lines 363,188 94
Orient Overseas Container Line 353,338 77
Hamburg Süd 338,778 109
Zim Integrated Shipping Services 322,685 96
K Line 318,193 82
Yang Ming Marine Transport Corporation 313,379 77
Hyundai Merchant Marine 271,604 52
Pacific International Lines 227,649 126
UASC 199,082 50

[edit]BBC tracking project

Main article: The Box (BBC container)

On September 5, 2008 the BBC embarked on a year-long project to study international trade and globalization by tracking a shipping container on its journey around the world. [25] [26]

[edit]See also

[edit]References

  1. ^ British civil engineer Henry Palmer writes in 1823: “as it is evident that the receptacles maybe received from the one, and lodged on to another kind of carriage or vessel separately from the wheels and frame work, without displacing the goods” Henry R. Palmer. “Description of a Railway on a New Principle”. J.Taylor, London, 1823. p. 41-42. Retrieved 2011-01.
  2. ^ McGough, Roger (Narrator), McAulay, Graeme (Director & Producer), Crossley-Holland, Dominic (Executive Producer). (2010). The Box that Changed Britain . [documentary]. BBC.
  3. ^ “History & Development of the Container”. U.S. Army Transportation Museum. United States Army Transportation School. Retrieved: 2007-12-29
  4. ^ CONEX. Defense Technical Information Center (DTIC)
  5. ^ Photos of containers in Baku
  6. ^ Marc Levinson (2006). The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger . Princeton Univ. Press. p. 1. ISBN ISBN 0-691-12324-1.
  7. ^ a b Cudahy, Brian J., “The Containership Revolution: Malcom McLean’s 1956 Innovation Goes Global”. TR News . (c/o National Academy of Sciences). Number 246. September–October 2006. (Adobe Acrobat *.PDF document)
  8. ^ a b c Levinson (2006), The Box .
  9. ^ Rushton, A., Oxley, J., Croucher, P. (2004). The Handbook of Logistics and Distribution Management . Kogan Page: London.
  10. ^ Postrel, Virginia (2006-03-23). “The Box that Changed the World”. Dynamist.com . Retrieved 2008-02-14.
  11. ^ Ebeling, C. E. (Winter 2009). “Evolution of a Box”. Invention and Technology 23 (4): 8–9. ISSN 8756-7296.
  12. ^ http://data.worldbank.org/indicator/IS.SHP.GOOD.TU
  13. ^ “Shipping containers”. Emase. Retrieved 2007-02-10.
  14. ^ http://railwaysafrica.com/index.php?option=com_content&task=view&id=3493&Itemid=36
  15. ^ Herod, Andrew (1998). “Discourse on the Docks: Containerization and Inter-Union Work Disputes in US Ports, 1955-85”. Transactions of the Institute of British Geographers (United Kingdom: The Royal Geographical Society) 23 (2): 177–191.doi:10.1111/j.0020-2754.1998.00177.x. Retrieved 2008-02-14.
  16. ^ http://www.universalcargo.com/blog/bid/49979/Shipping-Container-Shortage-Pushing-Up-Prices
  17. ^ Podsada, Janice. (2001-06-19) ‘Lost Sea Cargo: Beach Bounty or Junk?’, National Geographic News .[1] Retrieved 2007-04-17
  18. ^ “Rubber Duckies Map The World” – CBS News – July 31, 2003
  19. ^ “Banana box slip a worry”. Lloyd’s List Daily Commercial News (Informa Australia). 2008-02-07. Retrieved 2008-02-14.
  20. ^ http://ftp.resource.org/courts.gov/c/F2/854/854.F2d.1338.82-1347.87-1370.html 854 F.2d 1338, 129 L.R.R.M. (BNA) 2001, 1988 A.M.C. 2409, 272 U.S.App.D.C. 129, 57 USLW 2147, 109 Lab.Cas. P 10,681, NEW YORK SHIPPING ASSOCIATION, INC., International Longshoremen’s Association, AFL-CIO, Council of North Atlantic Shipping Associations, Atlantic Container Line, Ltd., Dart Containerline Company, Limited, Hapag-Lloyd Aktiengesellschaft, “Italia” S.P.A.N., Nedlloyd Lines B.V., Puerto Rico Maritime Shipping Authority, Sea-Land Service, Inc., Trans Freight Lines, Inc., and United States Lines, Inc., Petitioners, v. FEDERAL MARITIME COMMISSION and United States of America, Respondents. NEW YORK SHIPPING ASSOCIATION, INC., et al., Petitioners, v. FEDERAL MARITIME COMMISSION and United States of America, Respondents, American Trucking Assoc., Inc., American Warehousemen’s Assoc., West Gulf Maritime Assoc., National Customs Brokers & Forwarders Association of America, Inc., International Association of NVOCCs, et al., Intervenors. Nos. 82-1347, 87-1370. United States Court of Appeals, District of Columbia Circuit. Argued Dec. 17, 1987. Decided Aug. 9, 1988.]
  21. ^ Chronological History, Union Pacific Railroad Company.
  22. ^ Kaminski, Edward S. (1999). American Car & Foundry Company: A Centennial History, 1899-1999 . Wilton, California: Signature Press. ISBN 0963379100.
  23. ^ “A new fleet shapes up. (High-Tech Railroading)”. Railway Age . (c/o HighBeam Research). September 1, 1990.
  24. ^ “Liner market shares”. AXS-Alphaliner Top 100: Operated fleets as per 18 May 2010. May 2010.
  25. ^ “The Box takes off on global journey”. BBC News. 2008-09-08.
  26. ^ “BBC – The Box”. BBC. 5 September 2008. Retrieved 2008-09-05.

[edit]Further reading

[edit]External links

Look up containerization or isotainer in Wiktionary, the free dictionary.
Wikimedia Commons has media related to: Containerization
[show]v · d · eIntermodal containers
[show]v · d · eRail transport freight equipment
[show]v · d · eModern merchant vessels